Теорема Гаусса

Публикации по материалам Д. Джанколи. "Физика в двух томах" 1984 г. Том 2.

Теорема Гаусса устанавливает точное соотношение между потоком напряженности электрического поля через замкнутую поверхность и суммарным зарядом Q внутри этой поверхности:

где ε0 - та же константа (электрическая постоянная), что и в законе Кулона.
Подчеркнем, что Q - это заряд, заключенный внутри той поверхности, по которой берется интеграл в левой части. При этом не существенно, как именно распределен заряд внутри поверхности; заряды вне поверхности не учитываются. (Внешний заряд может повлиять на расположение силовых линий, но не на алгебраическую сумму линий, входящих внутрь поверхности и выходящих наружу.

Прежде чем переходить к обсуждению теоремы Гаусса, заметим, что интеграл по поверхности на практике не всегда легко вычисляется, однако необходимость в этом возникает не часто, за исключением самых простых ситуаций, которые мы рассмотрим ниже

Как же связаны между собой теорема Гаусса и закон Кулона? Покажем вначале, что закон Кулона следует из теоремы Гаусса. Рассмотрим уединенный точечный заряд Q. По предположению теорема Гаусса справедлива для произвольной замкнутой поверхности. Выберем поэтому такую поверхность, с которой удобнее всего иметь дело: симметричную поверхность сферы радиусом r, в центре которой находится наш заряд Q (рис. 23.7).

Поскольку сфера (конечно, воображаемая) симметрична относительно заряда, расположенного в ее центре, напряженность электрического поля Е должна иметь одно и то же значение в любой точке сферы; кроме того, вектор Е всюду направлен наружу (или всюду внутрь) параллельно вектору dA элемента поверхности. Тогда равенство

принимает вид

(площадь сферы радиусом r равна 4πr 2 ). Отсюда находим

В итоге мы получили закон Кулона.

Теперь об обратном. В общем случае теорему Гаусса нельзя вывести из закона Кулона: теорема Гаусса является более общим (и более тонким) утверждением, нежели закон Кулона. Однако для некоторых частных случаев теорему Гаусса удается получить из закона Кулона; мы используем общие рассуждения относительно силовых линий. Рассмотрим для начала уединенный точечный заряд, окруженный сферической поверхностью (рис. 23.7). Согласно закону Кулона, напряженность электрического поля в точке на поверхности сферы равна

Е = (1/4πε0)(Q/r)

Проделав в обратном порядке аналогичные рассуждения, получим

Это и есть теорема Гаусса, и мы вывели ее для частного случая точечного заряда в центре сферической поверхности. Но что можно сказать о поверхности неправильной формы, например поверхности А2 на рис. 23.8 . Через эту поверхность проходит то же число силовых линий, что и через сферу А1, но поскольку поток напряженности электрического поля через поверхность пропорционален числу проходящих через нее силовых линий, поток через А2 равен потоку через А1.

Следует ожидать поэтому, что формула

справедлива для любой замкнутой поверхности, окружающей точечный заряд.

Рассмотрим, наконец, случай, когда внутри поверхности находится не единственный заряд. Для каждого заряда в отдельности

Но коль скоро полная напряженность электрического поля Е есть сумма напряженностей, обусловленных отдельными зарядами, , то

где - суммарный заряд, заключенный внутри поверхности.
Итак, эти простые рассуждения подсказывают нам, что теорема Гаусса справедлива для любого распределения электрических зарядов внутри любой замкнутой поверхности. Следует иметь в виду, однако, что поле Е не обязательно обусловлено только зарядами Q, которые находятся внутри поверхности. Например, на рис. 23.3 рассмотренном ранее, электрическое поле Е существует во всех точках поверхности, однако оно создается вовсе не зарядом внутри поверхности (здесь Q = 0). Теорема Гаусса справедлива для потока напряженности электрического поля через любую замкнутую поверхность; она утверждает, что если поток, направленный внутрь поверхности, не равен потоку, направленному наружу, то это обусловлено наличием зарядов внутри поверхности.

Теорема Гаусса справедлива для любого векторного поля, обратно пропорционального квадрату расстояния, например, для гравитационного поля. Но для полей другого типа она не будет выполняться. Допустим, например, что поле точечного заряда убывает как kQ/r; тогда поток через сферу радиусом r определялся бы выражением

Чем больше радиус сферы, тем больше был бы поток, несмотря на то что заряд внутри сферы остается постоянным.

Применения теоремы Гаусса

Теорема Гаусса позволяет выразить связь между электрическим зарядом и напряженностью электрического поля в очень компактной и элегантной форме. С помощью этой теоремы удается легко найти напряженность поля в случае, когда распределение зарядов оказывается достаточно простым и симметричным. При этом, однако, необходимо позаботиться о надлежащем выборе поверхности интегрирования. Обычно стремятся выбрать поверхность так, чтобы напряженность электрического поля Е была постоянна по всей поверхности, или по крайней мере на определенных ее участках.

Чтобы получить эти результаты на основании закона Кулона, нам пришлось бы потрудиться, интегрируя по объему шара. Благодаря использованию теоремы Гаусса и симметрии задачи решение оказалось почти тривиальным. Это демонстрирует огромные возможности теоремы Гаусса. Однако подобное использование этой теоремы ограничено в основном случаями, когда распределение зарядов обладает высокой симметрией. В подобных ситуациях мы выбираем простую поверхность, на которой Е = const, и интеграл берется без труда. Разумеется, теорема Гаусса справедлива для любой поверхности, «простые» поверхности выбираются лишь для облегчения интегрирования.

Заключение

Поток напряженности однородного электрического поля Е через плоскую площадку А равен ФE = Е • А. Если поле неоднородно, то поток определяется интегралом ФE = ∫Е • dA.
Вектор А (или dA) направлен перпендикулярно площадке А (или dA); для замкнутой поверхности вектор А направлен наружу. Поток через поверхность пропорционален числу силовых линий, проходящих через эту поверхность.

Теорема Гаусса утверждает, что результирующий поток напряженности электрического поля, проходящий через замкнутую поверхность, равен суммарному заряду внутри поверхности, деленному на ε0 :

В принципе теорему Гаусса можно использовать для определения напряженности электрического поля, создаваемого заданным распределением зарядов. Однако на практике ее применение ограничено в основном несколькими частными случаями, когда распределение зарядов имеет высокую симметрию. Истинная ценность теоремы Гаусса состоит в том, что она устанавливает в более общем и более элегантном виде, чем закон Кулона, связь между электрическим зарядом и напряженностью электрического поля. Теорема Гаусса является одним из фундаментальных уравнений электромагнитной теории.

Продолжение следует. Коротко о следующей публикации:

Электрический потенциал и разность потенциалов

Альтернативные статьи:
Электрический ток. Теория,
Закон Ома. Формулы.


Замечания и предложения принимаются и приветствуются!