Определение напряженности электрического поля с помощью потенциала

Публикации по материалам Д. Джанколи. "Физика в двух томах" 1984 г. Том 2.

Формулу Разность потенциалов можно использовать для определения разности потенциалов между двумя точками электрического поля, если напряженность поля в области между этими точками известна. Обращая эту формулу мы можем выразить напряженность электрического поля через его потенциал, т. е., зная V, мы сможем определить Е.
Посмотрим, как это делается.
Уравнение можно переписать в дифференциальной форме:

dV = -E·dl = -Eldl,

где dV - бесконечно малая разность потенциалов между точками на расстоянии dl друг от друга, а El - составляющая напряженности электрического поля в направлении этого бесконечно малого перемещения dl.
Тогда:

Напряжённость 1

Таким образом, составляющая напряженности электрического поля по любому направлению равна градиенту потенциала в этом направлении, взятому с обратным знаком. Градиентом величины V называется ее производная по определенному направлению dV/dl. Если направление не указывается, то градиент соответствует направлению наиболее быстрого изменения V; это соответствует направлению вектора Е в данной точке, поскольку именно в таком направлении составляющая вектора Е совпадает с полной величиной напряженности поля:

Напряжённость

Если расписать составляющие вектора Е по координатам х, у, z и в качестве l взять направления вдоль осей х у, z, то уравнение (24.8) можно записать в виде:

Напряжённость x

Здесь dV/dx - частная производная V по направлению х при условии, что у и z фиксированы.

В последнем примере мы вычислили напряженность электрического поля Е диполя в произвольной точке пространства. Складывая векторы напряженностей, создаваемых каждым зарядом в отдельности, получить этот результат было бы гораздо сложнее. Вообще говоря, для многих распределений зарядов гораздо проще рассчитать потенциал, а затем по формуле (24.9) - напряженность электрического поля Е, чем вычислять по закону Кулона по отдельности Е для каждого заряда: скалярные величины складывать намного проще, чем векторы.

Электростатическая потенциальная энергия

Предположим, что точечный заряд q перемещают в пространстве из точки а в точку b, электрические потенциалы в которых, обусловленные другими зарядами, равны соответственно Va и Vb. Изменение электростатической потенциальной энергии заряда q в поле других зарядов составляет:

ΔU = Ub - Ua = q(Vb - Va) = qVba

Пусть теперь имеется система нескольких точечных зарядов. Чему равна электростатическая потенциальная энергия системы?
Удобнее всего выбрать за нуль потенциальную энергию зарядов на очень больших (в идеале бесконечно больших) расстояниях друг от друга. Потенциальная энергия уединенного точечного заряда Q1 равна нулю, поскольку в отсутствие других зарядов на него не действует никакая сила. Если к нему поднести второй точечный заряд, Q2, потенциал в точке, где находится второй заряд, будет равен:

Потенциал 3

Здесь r1 2 - расстояние между зарядами. Потенциальная энергия двух зарядов равна:

Потенциальная энергия

Она характеризует работу, необходимую для перемещения заряда Q2 из бесконечности (V = 0) на расстояние r1 2 до заряда Qi (или со знаком минус работу, необходимую для разнесения зарядов на бесконечно большое расстояние).

Если система состоит из трех зарядов, то ее полная потенциальная энергия будет равна работе по перемещению всех трех зарядов из бесконечности в место их расположения. Работа по сближению зарядов Q2 и Q1 определяется выражением (24.10);
чтобы перенести заряд Q3 из бесконечности в точку на расстоянии r1 3 от Q1 и на расстоянии r2 3 от Q2, требуется совершить работу:

работа по перемещению трёх зарядов

В этом случае потенциальная энергия системы трех точечных зарядов будет равна:

потенциальная энергия перемещения трёх зарядов

Для системы четырех зарядов выражение для потенциальной энергии будет содержать шесть таких членов и т.п. (При составлении подобных сумм необходимо следить за тем, чтобы не учитывать одну и ту же пару дважды). Часто нас интересует не полная электростатическая потенциальная энергия, а лишь часть ее. Например, может возникнуть необходимость найти потенциальную энергию одного диполя в присутствии другого диполя. Во взаимодействии участвуют четыре заряда: Q1 и -Q1 первого диполя и Q2 и -Q2 второго диполя.
Потенциальная энергия одного диполя и в присутствии другого (иногда ее называют энергией взаимодействия) представляет собой работу по сближению диполей с бесконечно большого расстояния. В этом случае нас не интересует взаимная потенциальная энергия зарядов Q1 и -Q1 или Q2 и -Q2; выражение для потенциальной энергии двух диполей будет содержать лишь четыре члена, соответствующие энергиям взаимодействия между зарядами: Q1 и Q2 ; Q1 и -Q2 ; -Q1 и Q2 ; -Q1 и -Q2.

Заключение

Электрический потенциал в любой точке пространства определяется как электростатическая потенциальная энергия единицы заряда. Разность потенциалов между двумя точками определяется взятой с обратным знаком работой, которая совершается полем при перемещении единичного электрического заряда между этими точками. Разность потенциалов измеряется в вольтах (1 В = 1 Дж/Кл) и иногда называется напряжением. Изменение потенциальной энергии заряда q при прохождении им разности потенциалов V равно ΔU = qVba.
Разность потенциалов V между точками b и a в однородном электрическом поле напряженностью Е определяется формулой V = — Ed, где d - расстояние вдоль силовой линии поля между этими точками.
В неоднородном электрическом поле Е соответствующее выражение имеет вид Разность потенциалов.
Таким образом, зная Е, всегда можно определить V. Если значение V известно, то составляющие напряженности поля Е можно найти, обращая приведенное соотношение:

Еx = -dV/dх , Еy = -dV/dу , Ez = -dV/dz .

Эквипотенциальные линии или поверхности представляют собой геометрическое место точек одного потенциала; они всюду перпендикулярны силовым линиям поля. Электрический потенциал уединенного точечного заряда Q относительно нулевого потенциала (на бесконечности) равен:

потенциал

Потенциал произвольного распределения зарядов можно определить, суммируя (интегрируя) потенциалы отдельных зарядов.

где r - расстояние от элемента заряда dq до точки, в которой определяется V.

Продолжение следует. Коротко о следующей публикации:

Электрическая емкость, диэлектрики, накопление электрической энергии.
Конденсатор - устройство для накопления электрического заряда, который состоит из двух проводников (обкладок), расположенных близко друг к другу, но не соприкасающихся.

Альтернативные статьи:
Постоянный ток, Переменный ток.


Замечания и предложения принимаются и приветствуются!